Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JAMA Netw Open ; 5(5): e2213253, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1858507

ABSTRACT

Importance: Neurologic symptoms are common in COVID-19, but the central nervous system (CNS) pathogenesis is unclear, and viral RNA is rarely detected in cerebrospinal fluid (CSF). Objective: To measure viral antigen and inflammatory biomarkers in CSF in relation to neurologic symptoms and disease severity. Design, Setting, and Participants: This cross-sectional study was performed from March 1, 2020, to June 30, 2021, in patients 18 years or older who were admitted to Sahlgrenska University Hospital, Gothenburg, Sweden, with COVID-19. All patients had CSF samples taken because of neurologic symptoms or within a study protocol. Healthy volunteer and prepandemic control groups were included. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Outcomes included CSF SARS-CoV-2 nucleocapsid antigen (N-Ag) using an ultrasensitive antigen capture immunoassay platform and CSF biomarkers of immune activation (neopterin, ß2-microglobulin, and cytokines) and neuronal injury (neurofilament light protein [NfL]). Results: Forty-four patients (median [IQR] age, 57 [48-69] years; 30 [68%] male; 26 with moderate COVID-19 and 18 with severe COVID-19 based on the World Health Organization Clinical Progression Scale), 10 healthy controls (median [IQR] age, 58 [54-60] years; 5 [50%] male), and 41 patient controls (COVID negative without evidence of CNS infection) (median [IQR] age, 59 [49-70] years; 19 [46%] male) were included in the study. Twenty-one patients were neuroasymptomatic and 23 were neurosymptomatic (21 with encephalopathy). In 31 of 35 patients for whom data were available (89%), CSF N-Ag was detected; viral RNA test results were negative in all. Nucleocapsid antigen was significantly correlated with CSF neopterin (r = 0.38; P = .03) and interferon γ (r = 0.42; P = .01). No differences in CSF N-Ag concentrations were found between patient groups. Patients had markedly increased CSF neopterin, ß2-microglobulin, interleukin (IL) 2, IL-6, IL-10, and tumor necrosis factor α compared with controls. Neurosymptomatic patients had significantly higher median (IQR) CSF interferon γ (86 [47-172] vs 21 [17-81] fg/mL; P = .03) and had a significantly higher inflammatory biomarker profile using principal component analysis compared with neuroasymptomatic patients (0.54; 95% CI, 0.03-1.05; P = .04). Age-adjusted median (IQR) CSF NfL concentrations were higher in patients compared with controls (960 [673-1307] vs 618 [489-786] ng/L; P = .002). No differences were seen in any CSF biomarkers in moderate compared with severe disease. Conclusions and Relevance: In this study of Swedish adults with COVID-19 infection and neurologic symptoms, compared with control participants, viral antigen was detectable in CSF and correlated with CNS immune activation. Patients with COVID-19 had signs of neuroaxonal injury, and neurosymptomatic patients had a more marked inflammatory profile that could not be attributed to differences in COVID-19 severity. These results highlight the clinical relevance of neurologic symptoms and suggest that viral components can contribute to CNS immune responses without direct viral invasion.


Subject(s)
COVID-19 , Adult , Antigens, Viral , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Interferon-gamma , Male , Middle Aged , Neopterin/cerebrospinal fluid , Neurofilament Proteins , RNA, Viral , SARS-CoV-2
2.
Alzheimer's & Dementia ; 17(S5):e057889, 2021.
Article in English | Wiley | ID: covidwho-1589188

ABSTRACT

Background Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We wished to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. Method Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analyzed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). Result We recruited 100 patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 who were followed for a median of (IQR) 225 (187?262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0.001) and higher GFAp than controls (p < 0.001). GFAp was also significantly increased in moderate disease (p < 0.05) compared with controls. NfL (r = 0.53, p < 0.001) and GFAp (r = 0.39, p < 0.001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly included fatigue (n = 40), ?brain-fog? (n = 29), and changes in cognition (n = 25). We found no relation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. Conclusion The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicate that post-acute COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. Although injury biomarkers commonly increase in severe acute COVID-19, further investigations into the causes of post-infectious sequelae are needed.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.03.21266112

ABSTRACT

COVID-19 has been associated with many neurological complications including stroke, delirium and encephalitis. Furthermore, many individuals experience a protracted post-viral syndrome which is dominated by neuropsychiatric symptoms, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of severe COVID-19 more broadly. We sought to investigate the dynamics of, and relationship between, serum markers of brain injury (neurofilament light [NfL], Glial Fibrillary Acidic Protein [GFAP] and total Tau) and markers of dysregulated host response including measures of autoinflammation (proinflammatory cytokines) and autoimmunity. Brain injury biomarkers were measured using the Quanterix Simoa HDx platform, cytokine profiling by Luminex (R&D) and autoantibodies by a custom protein microarray. During hospitalisation, patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependant manner, and there was evidence of ongoing active brain injury at follow-up 4 months later. Raised NfL and GFAP were associated with both elevations of pro-inflammatory cytokines and the presence of autoantibodies; autoantibodies were commonly seen against lung surfactant proteins as well as brain proteins such as myelin associated glycoprotein, but reactivity was seen to a large number of different antigens. Furthermore, a distinct process characterised by elevation of serum total Tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses in the same manner as NfL and GFAP.


Subject(s)
Hereditary Autoinflammatory Diseases , Delirium , Encephalitis , Central Nervous System Diseases , Nervous System Diseases , Chronobiology Disorders , COVID-19 , Stroke , Brain Diseases , Myokymia
4.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1488609

ABSTRACT

A wide range of neurological manifestations have been associated with the development of COVID-19 following SARS-CoV-2 infection. However, the etiology of the neurological symptomatology is still largely unexplored. Here, we used state-of-the-art multiplexed immunostaining of human brains (n = 6 COVID-19, median age = 69.5 years; n = 7 control, median age = 68 years) and demonstrated that expression of the SARS-CoV-2 receptor ACE2 is restricted to a subset of neurovascular pericytes. Strikingly, neurological symptoms were exclusive to, and ubiquitous in, patients that exhibited moderate to high ACE2 expression in perivascular cells. Viral dsRNA was identified in the vascular wall and paralleled by perivascular inflammation, as signified by T cell and macrophage infiltration. Furthermore, fibrinogen leakage indicated compromised integrity of the blood-brain barrier. Notably, cerebrospinal fluid from additional 16 individuals (n = 8 COVID-19, median age = 67 years; n = 8 control, median age = 69.5 years) exhibited significantly lower levels of the pericyte marker PDGFRß in SARS-CoV-2-infected cases, indicative of disrupted pericyte homeostasis. We conclude that pericyte infection by SARS-CoV-2 underlies virus entry into the privileged central nervous system space, as well as neurological symptomatology due to perivascular inflammation and a locally compromised blood-brain barrier.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/virology , COVID-19/physiopathology , Encephalitis, Viral/virology , Pericytes/virology , Angiotensin-Converting Enzyme 2/genetics , Animals , Blood-Brain Barrier , Brain/pathology , COVID-19/etiology , Case-Control Studies , Encephalitis, Viral/pathology , Fibrinogen/metabolism , Humans , Immunohistochemistry/methods , Mice , Pericytes/metabolism , Pericytes/pathology , Receptor, Platelet-Derived Growth Factor beta/cerebrospinal fluid
6.
EBioMedicine ; 70: 103512, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1330766

ABSTRACT

BACKGROUND: Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We sought to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. METHODS: Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analysed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). FINDINGS: One hundred patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 were followed for a median (IQR) of 225 (187-262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0·001), and higher GFAp than controls (p < 0·001). GFAp was also significantly increased in moderate disease (p < 0·05) compared with controls. NfL (r = 0·53, p < 0·001) and GFAp (r = 0·39, p < 0·001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly fatigue (n = 40), "brain-fog" (n = 29), and changes in cognition (n = 25). We found no correlation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. INTERPRETATION: The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicates that post COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. FUNDING: The Swedish State Support for Clinical Research, SciLifeLab Sweden, and the Knut and Alice Wallenberg Foundation have provided funding for this project.


Subject(s)
Astrocytes/pathology , Astrocytes/virology , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , Aged , Astrocytes/metabolism , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/metabolism , Disease Progression , Female , Follow-Up Studies , Glial Fibrillary Acidic Protein/metabolism , Humans , Longitudinal Studies , Male , Middle Aged , Neurofilament Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Sweden
7.
J Neurochem ; 159(1): 61-77, 2021 10.
Article in English | MEDLINE | ID: covidwho-1282005

ABSTRACT

Neurological symptoms are frequently reported in patients suffering from COVID-19. Common CNS-related symptoms include anosmia, caused by viral interaction with either neurons or supporting cells in nasal olfactory tissues. Diffuse encephalopathy is the most common sign of CNS dysfunction, which likely results from the CNS consequences of the systemic inflammatory syndrome associated with severe COVID-19. Additionally, microvascular injuries and thromboembolic events likely contribute to the neurologic impact of acute COVID-19. These observations are supported by evidence of CNS immune activation in cerebrospinal fluid (CSF) and in autopsy tissue, along with the detection of microvascular injuries in both pathological and neuroimaging studies. The frequent occurrence of thromboembolic events in patients with COVID-19 has generated different hypotheses, among which viral interaction with perivascular cells is particularly attractive, yet unproven. A distinguishing feature of CSF findings in SARS-CoV-2 infection is that clinical signs characteristic of neurotropic viral infections (CSF pleocytosis and blood-brain barrier injury) are mild or absent. Moreover, virus detection in CSF is rare and often of uncertain significance. In this review, we provide an overview of the neurological impact that occurs in the acute phase of COVID-19, and the role of CSF biomarkers in the clinical management and research to better treat and understand the disease. In addition to aiding as diagnostic and prognostic tools during acute infection, the use of comprehensive and well-characterized CSF and blood biomarkers will be vital in understanding the potential impact on the CNS in the rapidly increasing number of individuals recovering from COVID-19.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier , COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Humans , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis
8.
Neurology ; 96(2): e294-e300, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028474

ABSTRACT

OBJECTIVE: To explore whether hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurologic symptoms have evidence of CNS infection, inflammation, and injury using CSF biomarker measurements. METHODS: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, ß2-microglobulin, and immunoglobulin G index), blood-brain barrier integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe coronavirus disease 2019 (COVID-19) and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4 of 6), suspected meningitis (1 of 6), and dysgeusia (1 of 6). SARS-CoV-2 infection was confirmed by real-time PCR analysis of nasopharyngeal swabs. RESULTS: SARS-CoV-2 RNA was detected in the plasma of 2 patients (cycle threshold [Ct] value 35.0-37.0) and in CSF at low levels (Ct 37.2, 38.0, 39.0) in 3 patients in 1 but not in a second real-time PCR assay. CSF neopterin (median 43.0 nmol/L) and ß2-microglobulin (median 3.1 mg/L) were increased in all. Median immunoglobulin G index (0.39), albumin ratio (5.35), and CSF white blood cell count (<3 cells/µL) were normal in all, while CSF NfL was elevated in 2 patients. CONCLUSION: Our results in patients with COVID-19 and neurologic symptoms suggest an unusual pattern of marked CSF inflammation in which soluble markers were increased but white cell response and other immunologic features typical of CNS viral infections were absent. While our initial hypothesis centered on CNS SARS-CoV-2 invasion, we could not convincingly detect SARS-CoV-2 as the underlying driver of CNS inflammation. These features distinguish COVID-19 CSF from other viral CNS infections and raise fundamental questions about the CNS pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/complications , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL